“Influencia del Porcentaje de Hidroxiapatita sobre la Resistencia al Impacto, Desgaste Adhesivo y Dureza en Biocompuestos a base de Polietileno de Alta Densidad”
No Thumbnail Available
Date
2024-09
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Nacional de Trujillo
Abstract
La presente investigación tuvo como objetivo determinar la influencia de la hidroxiapatita
(HA) sobre la resistencia al impacto, el desgaste adhesivo y la dureza en biocompuestos a base de
polietileno de alta densidad (HDPE).
La hidroxiapatita se obtuvo a partir de cáscaras de huevo a las cuales se les realizó un
proceso de molienda, fosfatado y calcinación. Se caracterizó el polvo resultante mediante
Espectroscopía Infrarroja por Transformada de Fourier (FTIR), Análisis Termogravimétrico (TG)
y Difracción de Rayos X (DRX) obteniendo los grupos funcionales característicos, la estabilidad
química, los ángulos de difracción y los planos cristalográficos correspondientes, respectivamente,
lo que demuestra que el polvo obtenido es hidroxiapatita.
Los biocompuestos se formaron tomando como matriz al HDPE y como refuerzo a la HA
al 10, 20, 30 y 40% en peso, mediante el proceso de extrusión a una temperatura aproximada de
220°C usando un equipo extrusor monohusillo de laboratorio.
Los mejores resultados se obtuvieron para la adición del 20% en peso de HA en el
biocompuesto, obteniendo una resistencia al impacto de 23.057 KJ/m2, que representa un 127% de
aumento, además presentan un menor desgaste con una correspondiente pérdida de masa de 0.367g
representando una disminución del 83% y una mayor dureza con un valor de 19.767 Shore D que
indica un 17% de incremento con respecto a las muestras sin relleno de HA.
Por lo que se concluye que la adición de hidroxiapatita en el biocompuesto influye
mejorando las propiedades de resistencia al impacto, desgaste adhesivo y dureza, siendo el
porcentaje óptimo de adición el 20% en peso.
The research aimed to determine how hydroxyapatite (HA) influences impact resistance, wear adhesion and toughness in high-density polyethylene (HDPE)-biocomposites. Hydroxyapatite derived from eggshells underwent grinding, phosphating, and calcination processes. Characterization of the resulting powder involved Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TG), and X-ray Diffraction (XRD) to identify characteristic functional groups, chemical stability, diffraction angles, and corresponding crystallographic planes, confirming the composition as hydroxyapatite. Biocomposites containing HDPE as matrix and HA as reinforcement at 10, 20, 30 and 40% by weight, through the extrusion process at a temperature of approximately 220°C using a laboratory single-screw extruder. the samples without HA filler. The best results achieved in the case of the addition of 20% by weight of HA in the biocomposite, with an impact resistance of 23.057 KJ/m2, which represents a 127% increase, as well as a reduced wear with a decrease in mass loss of 0.367g, representing a reduction of 83%, and a higher toughness with a value of 19.767 Shore D, showing a 17% increase with respect to Therefore, it was found that the addition of hydroxyapatite in the biocomposite improves the properties of impact resistance, wear adhesion and toughness, with an optimum addition percentage of 20% by weight.
The research aimed to determine how hydroxyapatite (HA) influences impact resistance, wear adhesion and toughness in high-density polyethylene (HDPE)-biocomposites. Hydroxyapatite derived from eggshells underwent grinding, phosphating, and calcination processes. Characterization of the resulting powder involved Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TG), and X-ray Diffraction (XRD) to identify characteristic functional groups, chemical stability, diffraction angles, and corresponding crystallographic planes, confirming the composition as hydroxyapatite. Biocomposites containing HDPE as matrix and HA as reinforcement at 10, 20, 30 and 40% by weight, through the extrusion process at a temperature of approximately 220°C using a laboratory single-screw extruder. the samples without HA filler. The best results achieved in the case of the addition of 20% by weight of HA in the biocomposite, with an impact resistance of 23.057 KJ/m2, which represents a 127% increase, as well as a reduced wear with a decrease in mass loss of 0.367g, representing a reduction of 83%, and a higher toughness with a value of 19.767 Shore D, showing a 17% increase with respect to Therefore, it was found that the addition of hydroxyapatite in the biocomposite improves the properties of impact resistance, wear adhesion and toughness, with an optimum addition percentage of 20% by weight.
Description
Keywords
TECHNOLOGY::Materials science