Caracterización del generador infinitesimal de un semigrupo de operadores de Lipschitz en espacios de Banach

No Thumbnail Available
Date
2016
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Nacional de Trujillo
Abstract
En este trabajo de tesis se estudia a los semigrupos de operadores de Lipschitz,_x000D_ una clase especial de semigrupos que se caracterizan por cumplir la condici on de_x000D_ Lipschitz. Aqu se estudia las propiedades b asicas de tales semigrupos y la caracterizaci_x000D_ on de su generador in nitesimal._x000D_ Caracterizar un operador A como generador de tal semigrupo est a relacionado_x000D_ al problema de Cauchy, es decir, al siguiente problema_x000D_ u0(t) = Au(t) para todo t 0 y u(0) = x_x000D_ siendo X un espacio de Banach, A : X ! X un operador continuo y u : [0;1) ! X_x000D_ la funci on inc ognita la cual es diferenciable en R+. Para obtener esto, asumiremos_x000D_ que el operador A es continuo sobre un conjunto cerrado D X y adem as satisface_x000D_ condiciones de tipo subtangencial y disipativo con la ayuda de un funcional V que_x000D_ posee interesantes propiedades
Description
This thesis work studies a special class of semigroups that satisfy the Lipschitz's_x000D_ condition. They are called semigroups of Lipschitz operators. Here, it is studied_x000D_ some properties of this class of semigroups and the important part is focused in the_x000D_ characterization of its generator._x000D_ The problem of characterizing an operator A as a generator of this class of_x000D_ semigroups is closely related to the Cauchy problem for A :_x000D_ u0(t) = Au(t) for t 0 and u(0) = x_x000D_ where X is a Banach space, A : X ! X is a continuous operator and u : [0;1) ! X_x000D_ an unknown function which is di erentiable in R+. To success, the operator A it is_x000D_ assumed to be continuous from a closed subset D of a real Banach space X satisfying_x000D_ a subtangential condition and a dissipative condition and supported by a functional_x000D_ V that have interesting properties
Keywords
Operador de Lipschitz, problema de Cauchy, condici on subtangencial
Citation