Fabricación de bioenvase a base de almidón y microfibras de subproducto de dos variedades de papa
No Thumbnail Available
Date
2025
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Nacional de Trujillo
Abstract
Siendo Perú el mayor productor de papa en Latinoamérica y por consiguiente La Libertad como la quinta región con mayor producción, se proyectó a recolectar el subproducto del proceso de pelado de este tubérculo con la finalidad de elaborar bioenvases con iguales o mejores propiedades que las del poliestireno. En el presente trabajo se ha investigado la obtención de bioenvases a partir de almidón y microfibras de subproducto de papa de dos variedades, Huevo de indio (PH) y Canchán (PC). Se aprovechó al 100% los residuos “sin valor” obteniendo almidón tamizado a 75µm y fibras tamizadas de <150 µm, 150-75 µm y 75-45 µm (correspondientes a los números de tamiz 100, 200 y 325 respectivamente) de cada variedad individualmente con su respectivo análisis proximal. Los bioenvases fueron elaborados mediante el método de termoprensado a 150°C durante 12 minutos. Posteriormente se evaluaron las propiedades físicas, mecánicas y térmicas empleando un arreglo factorial, con un Diseño Completamente al Azar (DCA). En la caracterización física de las bioenvases se observó que a mayor concentración y tamaño de microfibras tanto para PH como PC, se incrementaron los colores amarillos y rojizos, destacando los bioenvases de PC. El espesor oscila entre (PH: 0.34-0.48 cm y PC: 0.30-0.47 cm), la densidad entre (PH: 0.14-0.22 g/cm3 y PC: 0.13-0.26 g/cm3), WAC entre (PH: 128.23± 15.5% y PC: 109.8± 9.93 %). Las propiedades mecánicas de las bandejas en cada variedad demostraron que en bajas concentraciones de fibra (tratamientos 95/5 y 90/10) refuerzan la dureza obteniendo valores altos (PH:14.25 Kg-f y PC: 11.11 Kg-f), fracturabilidad (PH: 5.27mm y PC: 4.74mm), tensión (PH: 14.3Kg-f y PC: 16.08Kg-f) y elongación (PH: 2.03% y PC: 1.96%). Los Análisis de Espectroscopía Infrarroja por transformada de Fourier (F-TIR) demostraron que en los bioenvases de PH provoca un aumento en la intensidad de las bandas por encima del mejor bioenvase de PC rescatando la influencia del tamaño de las microfibras, ya que a menor tamaño de partículas disminuyen las intensidades (por la absorbancia de las moléculas de celulosa). Los análisis de Calorimetría de Barrido Diferencial (DSC) mostraron una estabilidad térmica de las bandejas favorable. Se concluyó que las bandejas H14 (80/20), H22 (90/10), H31 (95/5) y C31 (95/5) presentan las mejores propiedades físicas y mecánicas, favorables para el uso en alimentos sólidos.
ABSTRACT Being Peru the largest potato producer in Latin America and, consequently, La Libertad as the fifth region with the highest production, it was projected to collect the byproduct of the peeling process of this tuber with the purpose of creating biopackaging with equal or better properties than polystyrene. In this work, the obtaining of biopackaging from starch and microfibers of potato byproduct from two varieties, Huevo de Indio (PH) and Canchán (PC), the most consumed in the region, has been investigated. 100% of the "valueless" waste was utilized, obtaining starch sieved at 75 µm and sieved fibers of 150 µm, 150-75 µm y 75-45 µm (corresponding to sieve numbers 100, 200, and 325 respectively) from each variety individually, with their respective proximal analysis. The biopackaging were made using the thermopressing method at 150°C for 12 minutes. Subsequently, the physical, mechanical, and thermal properties were evaluated using a factorial arrangement, with a Completely Randomized Design (CRD). In the physical characterization of the biopackaging, it was observed that with a higher concentration and size of microfibers for both PH and PC, the yellow and reddish colors increased, highlighting the PC biopackaging. The thickness ranges between (PH: 0.34-0.48 cm and PC: 0.30-0.47 cm), the density between (PH: 0.14-0.22 g/cm3 and PC: 0.13-0.26 g/cm3), and WAC between (PH: 128.23± 15.5% and PC: 109.8± 9.93%). The mechanical properties of the trays in each variety showed that at low fiber concentrations (Treatments 95/5 and 90/10), they reinforced hardness, obtaining high values (PH: 14.25 Kg-f and PC: 11.11 Kg-f), fracturability (PH: 5.27 mm and PC: 4.74 mm), tension (PH: 14.3 Kg-f and PC: 16.08 Kg-f), and elongation (PH: 2.03% and PC: 1.96%). Fourier Transform Infrared Spectroscopy (FT-IR) analysis showed that in PH biopackaging, there is an increase in band intensity above the best PC biopackaging, highlighting the influence of microfiber size, as smaller particle sizes reduce intensities (due to the absorbance of cellulose molecules). Differential Scanning Calorimetry (DSC) analysis showed favorable thermal stability of the trays. It was concluded that trays H14 (80/20), H22 (90/10), H31 (95/5), and C31 (95/5) present the best physical and mechanical properties, suitable for use in solid foods.
ABSTRACT Being Peru the largest potato producer in Latin America and, consequently, La Libertad as the fifth region with the highest production, it was projected to collect the byproduct of the peeling process of this tuber with the purpose of creating biopackaging with equal or better properties than polystyrene. In this work, the obtaining of biopackaging from starch and microfibers of potato byproduct from two varieties, Huevo de Indio (PH) and Canchán (PC), the most consumed in the region, has been investigated. 100% of the "valueless" waste was utilized, obtaining starch sieved at 75 µm and sieved fibers of 150 µm, 150-75 µm y 75-45 µm (corresponding to sieve numbers 100, 200, and 325 respectively) from each variety individually, with their respective proximal analysis. The biopackaging were made using the thermopressing method at 150°C for 12 minutes. Subsequently, the physical, mechanical, and thermal properties were evaluated using a factorial arrangement, with a Completely Randomized Design (CRD). In the physical characterization of the biopackaging, it was observed that with a higher concentration and size of microfibers for both PH and PC, the yellow and reddish colors increased, highlighting the PC biopackaging. The thickness ranges between (PH: 0.34-0.48 cm and PC: 0.30-0.47 cm), the density between (PH: 0.14-0.22 g/cm3 and PC: 0.13-0.26 g/cm3), and WAC between (PH: 128.23± 15.5% and PC: 109.8± 9.93%). The mechanical properties of the trays in each variety showed that at low fiber concentrations (Treatments 95/5 and 90/10), they reinforced hardness, obtaining high values (PH: 14.25 Kg-f and PC: 11.11 Kg-f), fracturability (PH: 5.27 mm and PC: 4.74 mm), tension (PH: 14.3 Kg-f and PC: 16.08 Kg-f), and elongation (PH: 2.03% and PC: 1.96%). Fourier Transform Infrared Spectroscopy (FT-IR) analysis showed that in PH biopackaging, there is an increase in band intensity above the best PC biopackaging, highlighting the influence of microfiber size, as smaller particle sizes reduce intensities (due to the absorbance of cellulose molecules). Differential Scanning Calorimetry (DSC) analysis showed favorable thermal stability of the trays. It was concluded that trays H14 (80/20), H22 (90/10), H31 (95/5), and C31 (95/5) present the best physical and mechanical properties, suitable for use in solid foods.
Description
Keywords
Bioenvases microfibra, Almidón de subproducto de papa