Leyes de Conservación de masa-momento para un fluido ideal en el marco inercial de la Relatividad Especial
No Thumbnail Available
Date
2024
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Nacional de Trujillo
Abstract
La naturaleza, fuente de modelos científicos, como por ejemplo, los fluidos de la atmosfera,
son preocupación mundial, que los científicos permanentemente deben resolver para, evitar
las catastróficas consecuencias que ellos producen. La mecánica clásica, en su estudio de
estos fenómenos, tiene, importantes leyes de conservación, como la conservación de, la
masa, del momento, de la energía y otros, Es necesario, buscar y generalizar gradualmente
la solución, de estos problemas en marcos más generales, cómo, por ejemplo, en la teoría de
la relatividad especial.
En la mecánica no relativista los fenómenos físicos son tratados en marcos inerciales en
tiempos y espacios absolutos e invariantes bajo las transformaciones de Galileo. En el marco
de la teoría de la relatividad especial cada sistema del espacio tiempo, cuenta con su tiempo
propio, hay dilatación del tiempo y la contracción de longitudes, no hay conservación de la
masa ni del momento. Así que, hay necesidad de reformular gradualmente las reglas para
obtener resultados en este nuevo marco de referencia. Primero en la física de partículas y
luego en los fluidos. Los cuatro vectores del espacio tiempo están constituidos por la parte
temporal y espacial, eso lleva a tener posteriormente energía y momento ligados, obteniendo,
los vectores de energía – momento, En los fluidos, mundo de las densidades afectados por
presiones, viscosidades y otros; se debe obtener resultados correspondientes a las leyes de
conservación, esto es, obtener el tensor de energía - momento y sus correspondientes leyes
de, continuidad, motivo de nuestra investigación.,
Nature, as a source of scientific models, such as, atmospheric fluids is a global concern that scientists must continuously address to prevent the catastrophic consequences they cause. Classical mechanics in its study of these phenomena, has important conservation laws, such as, the conservation of mass, momentum, energy, and others. It is necessary to gradually seek and generalize solutions to these problems within more general frameworks, such as the theory of special relativity. In non-relativistic mechanics, physical phenomena are treated within inertial frames in absolute time and space, invariant under Galilean transformations. Within the framework of special relativity, each space-time system has its own proper time, time dilation occurs, and lengths contract; there is no conservation of mass or momentum. Thus, there is a need to gradually reformulate the rules to obtain results in this new frame of reference, first in particle physics and later in fluids. The four-vectors of space-time are made up of temporal and spatial components, leading to the eventual linkage of energy and momentum, resulting in energy-momentum vectors. In fluids, a world governed by densities affected by pressures, viscosities, and other factors, corresponding results to the conservation laws must be obtained. This means deriving the energy-momentum tensor and its corresponding continuity laws, which is the focus of our research.
Nature, as a source of scientific models, such as, atmospheric fluids is a global concern that scientists must continuously address to prevent the catastrophic consequences they cause. Classical mechanics in its study of these phenomena, has important conservation laws, such as, the conservation of mass, momentum, energy, and others. It is necessary to gradually seek and generalize solutions to these problems within more general frameworks, such as the theory of special relativity. In non-relativistic mechanics, physical phenomena are treated within inertial frames in absolute time and space, invariant under Galilean transformations. Within the framework of special relativity, each space-time system has its own proper time, time dilation occurs, and lengths contract; there is no conservation of mass or momentum. Thus, there is a need to gradually reformulate the rules to obtain results in this new frame of reference, first in particle physics and later in fluids. The four-vectors of space-time are made up of temporal and spatial components, leading to the eventual linkage of energy and momentum, resulting in energy-momentum vectors. In fluids, a world governed by densities affected by pressures, viscosities, and other factors, corresponding results to the conservation laws must be obtained. This means deriving the energy-momentum tensor and its corresponding continuity laws, which is the focus of our research.
Description
Keywords
Fluidos Newtonianos, Conservación de masa, Conservación de momento, Relatividad especial, Conservación de energía- momento