Algoritmo genetico para el problema dinamico y continuo de asignacion de atraques con retrasos en la llegada de los barcos
No Thumbnail Available
Date
2014
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Nacional de Trujillo
Abstract
El presente trabajo consiste en la planificación de atraques de barcos (Berth Allocation Problem, BAP), este trabajo tiene las siguientes variantes con respecto a la asignación de atraques: se realiza de forma dinámica y continua, además de que los barcos pueden llegar con un cierto retraso. Lo que se busca es reducir el menor tiempo de espera de los barcos y la mejor utilización del espacio del muelle. Este problema, se ha solucionado mediante un Modelo Matemático (MM), el cual esta implementado en OPL de CPLEX, debido que el problema es de tipo combinatorio, su complejidad es NP duro, con lo cual solo sirve para instancias de pocos barcos, para un número mayor de barcos se debe buscar otro tipo de solución como por ejemplo las meta heurísticas, que puedan obtener buenas soluciones en tiempos razonables, en este trabajo lo que se pretende es diseñar e implementar un algoritmo genético (AG) que solucione dicho problema y luego realizar la comparación de resultados con el MM. Para el diseño del AG se siguió los siguientes pasos: diseñar el cromosoma, generar la población inicial, crear la función de adaptación, evaluación de la convergencia, elegir un método de selección, cruzamiento y mutación. El Algoritmo Genético se implementó en el lenguaje de programación “C”. Los datos generados para la evaluación de los programas, son aleatorios, y son lo más real posible. Estos datos (tiempo de posible llegada, tiempo de máxima llegada, tiempo de servicio y longitud para cada barco) son la entrada para la evaluación de los programas. Luego, se hacen las planificaciones tanto en el AG como en el MM, obteniendo resultados que fueron evaluados mediante gráficos comparativos y pruebas estadísticas. La cantidad de resultados obtenidos fue pequeña, debido a la versión en la que se programó el MM (solo permitió trabajar hasta con 12 barcos) en cambio para el AG se puedo tomar los resultados hasta lo planeado (30 barcos), por ello de las pruebas estadísticas se puede concluir lo siguiente: El AG resuelve el problema pero no mejora los resultados que obtiene el Modelo Matemático.
Description
Keywords
AG, BAP, Función de adaptación, Cromosoma