El efecto de la brecha de género en el empleo informal del Perú, 2018
No Thumbnail Available
Date
2020
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Nacional de Trujillo
Abstract
En esta investigación se analiza el efecto de la brecha de género en el empleo informal del Perú (2018). Según la ENAHO, el empleo informal en el Perú representó el 72.8% de fuerza laboral, es decir, 11.5 millones de peruanos tienen un empleo informal, de los cuales 8.8 millones (55.8%) laboran dentro del sector informal y 2.7 millones (17.0%) trabajan como informales fuera del sector informal. Esta información es de gran importancia para conocer la situación en que se encuentran laborando las mujeres del Perú. En el presente trabajo de investigación se aplicó el modelo probit y logit, siendo la principal variable independiente género, variable control, estado conyugal, nivel educativo, pobreza, población rural, edad y la variable dependiente, empleo informal. Como principal resultado se encuentra que, si un individuo tiene el género femenino, la probabilidad de tener un empleo informal aumenta en 12.3%; si tiene un grado más de educación, la probabilidad de tener un empleo informal disminuye en 10.7%; si es casado, la probabilidad de tener un empleo informal disminuye en 23.1%; si es pobre, la probabilidad de tener un empleo informal aumenta en 66%; si el individuo radica en una zona rural, la probabilidad de tener un empleo informal aumenta en 75.6% y si tiene un año más de edad, la probabilidad disminuye en 1%.
ABSTRACT This research analyzes the effect of the gender gap on informal employment in Peru (2018). According to ENAHO, informal employment in Peru represented 72.8% of the workforce, that is, 11.5 million Peruvians have informal employment, of which 8.8 million (55.8%) work in the informal sector and 2.7 million (17.0%) ) work as informal outside the informal sector. This information is of great importance to know the situation in which the women of Peru are working. In the present research work, the probit and logit model was applied, the main independent variable being gender, control variable, marital status, educational level, poverty, rural population, age, and the dependent variable, informal employment. As the main result, it is found that, if an individual is female, the probability of having an informal job increases by 12.3%; if she has a higher degree of education, the probability of having an informal job decreases by 10.7%; if he is married, the probability of having an informal job decreases by 23.1%; if it is poor, the probability of having an informal job increases by 66%; if the individual lives in a rural area, the probability of having an informal job increases by 75.6% and if he is one year older, the probability decreases by 1%.
ABSTRACT This research analyzes the effect of the gender gap on informal employment in Peru (2018). According to ENAHO, informal employment in Peru represented 72.8% of the workforce, that is, 11.5 million Peruvians have informal employment, of which 8.8 million (55.8%) work in the informal sector and 2.7 million (17.0%) ) work as informal outside the informal sector. This information is of great importance to know the situation in which the women of Peru are working. In the present research work, the probit and logit model was applied, the main independent variable being gender, control variable, marital status, educational level, poverty, rural population, age, and the dependent variable, informal employment. As the main result, it is found that, if an individual is female, the probability of having an informal job increases by 12.3%; if she has a higher degree of education, the probability of having an informal job decreases by 10.7%; if he is married, the probability of having an informal job decreases by 23.1%; if it is poor, the probability of having an informal job increases by 66%; if the individual lives in a rural area, the probability of having an informal job increases by 75.6% and if he is one year older, the probability decreases by 1%.
Description
Keywords
Género, Modelo probit, Empleo informal