Espacios de Sobolev fraccionarios vía derivada de Riemann - Liouvill
No Thumbnail Available
Date
2024
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Nacional de Trujillo
Abstract
En este trabajo se definió, a partir de las derivadas débiles fraccionarias de Riemann-Liouville, el espacio de Sobolev fraccionario, consistiendo de aquellas funciones de Lp (a, b) cuyas derivadas débiles también pertenecen a Lp(a, b). Además se demostró que dicho espacio es completo, reflexivo y separable
Abstract In this work, the fractional Sobolev space was defined from the weak fractional derivati ves of Riemann-Liouville, consisting of those functions of Lp (a, b) whose weak derivatives also belong to Lp (a, b). Furthermore, it was demonstrated that said space is complete,reflective and separable
Abstract In this work, the fractional Sobolev space was defined from the weak fractional derivati ves of Riemann-Liouville, consisting of those functions of Lp (a, b) whose weak derivatives also belong to Lp (a, b). Furthermore, it was demonstrated that said space is complete,reflective and separable
Description
Keywords
Derivada fraccionaria, Matemática superior