Modelo logístico y redes neuronales para pronóstico de anemia en menores de 3 años
No Thumbnail Available
Date
2022
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Nacional de Trujillo
Abstract
El presente trabajo de investigación tiene como objetivo principal determinar cuál _x000D_
de las dos técnicas regresión logística y redes neuronales es el mejor modelo predictivo_x000D_
para poder pronosticar la anemia en niños menores de 3 años atendidos en el Hospital_x000D_
Víctor Lazarte Echegaray durante el periodo 2019, para ello se utilizó un tamaño de _x000D_
muestra para casos y controles de 214 niños (107 con anemia y 107 sin anemia). Para la _x000D_
estimación del modelo de regresión logística se utilizó el 77% de la muestra para el_x000D_
modelamiento, arrojando una tasa de predicción del 70.12%, se evaluó el modelo con la _x000D_
prueba ómnibus y el test de Hosmer Lemeshow, resultando ser un modelo óptimo, pues _x000D_
cumplió con todas las especificaciones de los test, así mismo se validó su capacidad _x000D_
predictiva con el 23% de la data produciendo una tasa de acierto del 60%. Para el modelo _x000D_
de redes neuronales se particionó la data en 54% para el entrenamiento, obtenido una tasa _x000D_
de predicción del 71.1%, para la prueba se usó el 23% de la data y para la predicción del _x000D_
modelo el 23%, arrojando una tasa de acierto del 54% y 72% respectivamente, concluyendo _x000D_
que el mejor modelo predictivo para predecir la anemia en niños menores de 3 años _x000D_
atendidos en el Hospital Víctor Lazarte Echegaray es el de redes neuronales
Description
The main objective of this research is to determine which of the two techniques _x000D_
logistic regression and neural networks is the best predictive model to predict anemia in _x000D_
children under 3 years of age treated at the Victor Lazarte Echegaray Hospital during the _x000D_
period 2019, for this purpose a sample size of 214 children (107 with anemia and 107 _x000D_
without anemia) was used for cases and controls. For the estimation of the logistic _x000D_
regression model, 77% of the sample was used for modeling, yielding a prediction rate of _x000D_
70.12%, the model was evaluated with the omnibus test and the Hosmer Lemeshow test, _x000D_
resulting in an optimal model, since it met all the specifications of the tests, likewise its _x000D_
predictive capacity was validated with 23% of the data producing a success rate of 60%. _x000D_
For the neural network model, the data was partitioned into 54% for training, obtaining a _x000D_
prediction rate of 71.1%, 23% of the data was used for the test and 23% for the prediction _x000D_
of the model, yielding an accuracy rate of 54% and 72% respectively, concluding that the _x000D_
best predictive model for predicting anemia in children under 3 years of age treated at the _x000D_
Victor Lazarte Echegaray Hospital is the neural network model
Keywords
Anemia, Redes Neuronales, Regresión Logística