Moreno Eustaquio, WalterCastillo Vergara, Benson Neil2017-10-182017-10-182017https://hdl.handle.net/20.500.14414/8955The main problems of environmental pollution are mainly in the air and water. In the air, industrial and vehicle emissions have increased the concentration of gases and particulate pollutants in the atmosphere; On the other hand, the degradation of water is caused by the discharge of pollutants between them, the oils that usually come from industrial effluents and from domestic drains, as is the case of used vegetable oils. In the UNT these two environmental problems are caused by the discharge to the drain of 13.8 kg weekly of used vegetable oil. In order to find a solution, it was proposed to take advantage of these discarded oils from the university dining room to produce a clean fuel that could replace diesel. Biodiesel comes from the transesterification of vegetable oils, where the fatty acids that make up the triglycerides (in the presence of a KOH or NaOH catalyst and high temperatures) react with an alcohol (methanol) to produce methyl esters and release glycerol. To obtain these products a series of intermediate reactions are generated in which the initial triglyceride passes to diglyceride, monoglyceride and finally to glycerol, producing a methyl ester in each reaction. The final product generally contains impurities so it is necessary to wash it to avoid corrosion and residue problems during use in diesel engines. In spite of this, the use of biodiesel as diesel additive has environmental advantages because it does not generate SO2 during its combustion and also reduces the emission of contaminating particles to the environment. This research was divided into five parts, the first was to characterize used vegetable oil to determine its acidity index; Subsequently at the laboratory level determine the optimum reaction temperature; Then with this temperature find the optimum reaction time as well as the best catalyst; And finally with the products obtained know the quality of the biodiesel evaluating its combustible properties. The amount of used vegetable oil discarded was quantified: 13.8 kg / week. A pre-treatment was performed on the oil which consisted of the removal of solids, dried removal of free fatty acids. For the latter, if the oil used had an acid value (IA) <1% more catalyst should be added to the reaction; However if IA were> 1% an acid esterification would be performed. The acid value obtained was 0.6%, whereby the quantities of catalyst to be used in the treatments were determined: 4.425 g NaOH / L oil and 10.245 g KOHg KOH / L oil. In order to know the optimal reaction temperature, 10 treatments were carried out in the laboratory according to the type of catalyst and temperature level (60 ° C, 50 ° C, 40 ° C, 30 ° C, ambient). Properties were measured for each product, such as drop rate, biodiesel production yield, glycerol yield and density; A factorial arrangement was used in DCA. As there was no gas chromatograph that could have accurately determined the percentage of methyl esters and intermediates in the final result, it was decided to consider the amount of glycerol produced as a determinant to obtain a better product, because it derives from a Higher conversion of triglycerides and fewer intermediate products in biodiesel. For 60 ° C not only better performance was obtained but also a higher fall rate. In the biodiesel reactor 2 baths of 40 L of oil were transesterified at 60 ° C for each type of catalyst; Samples were taken every fifteen minutes to determine the optimum time and best catalyst in the reaction. The resultant products were measured the same properties as on a laboratory scale and the same criterion was used for the amount of glycerol produced to know the best biodiesel production at the time level. In the case of NaOH, the highest production of glycerol was obtained at 150 minutes of reaction but with a yield of 12.6%, however for the reaction catalyzed with KOH, the optimum time was 75 minutes and the yield was 14.6%. This latter catalyst therefore achieves a greater transformation of triglycerides to methyl esters and glycerol. Evaluating the biodiesel production yields with respect to the original used oil, 96.9% (catalyzed with NaOH) and 94.4% (catalyzed with KOH) were obtained. The combustion properties measured in the produced biodiesel were compared with the standards ASTM 6751-03 (B100), being that: the flash point, cetane number, percentage of ash, kinematic viscosity and acidity index, comply with the technical standard; While the percentage of water and sediments (for the product with NaOH), and percentage of conradson coal (for both catalysts), do not comply with the standards, so the product would still contain impurities due to a possible deficiency in The washingLos problemas principales de contaminación ambiental se dan principalmente en el aire y agua. En el aire, las emisiones industriales y de vehículos han incrementado la concentración de gases y partículas contaminantes en la atmósfera; por otro lado, la degradación de las aguas se origina por el vertido de contaminantes entre ellos, los aceites que generalmente provienen de efluentes industriales y de los desagües domésticos, como es el caso de los aceites vegetales usados. En la UNT estos dos problemas ambientales son causados por el vertido al desagüe de 13.8 kg semanales de aceite vegetal usado. A fin de buscar una solución, se planteó aprovechar estos aceites desechados del comedor universitario para la elaboración un combustible limpio que pueda reemplazar al diésel. El biodiesel proviene de la transesterificación de aceites vegetales, en donde los ácidos grasos que conforman los triglicéridos (en presencia de un catalizador KOH o NaOH y altas temperaturas) reaccionan con un alcohol (metanol) para producir metilésteres y liberar glicerol. Para obtener estos productos se generan una serie de reacciones intermedias en donde el triglicérido inicial pasa a diglicérido, monoglicérido y finalmente a glicerol, produciendo un metiléster en cada reacción. El producto final generalmente contiene impurezas por lo que es necesario lavarlo para evitar problemas de corrosión y residuos durante su uso en motores diésel. Pese a esto, el uso de biodiesel como aditivo al diésel posee ventajas ambientales pues no genera SO2 durante su combustión y además reduce la emisión de partículas contaminantes al ambiente. Esta investigación se dividió en cinco partes, la primera fue caracterizar e aceite vegetal usado para determinar su índice de acidez; posteriormente a nivel de laboratorio determinar la óptima temperatura de reacción; luego con esta temperatura encontrar el tiempo óptimo de reacción así como el mejor catalizador; y finalmente con los productos obtenidos conocer la calidad del biodiesel evaluando sus propiedades combustibles. Se cuantificó la cantidad de aceite vegetal usado desechado: 13.8 kg/semana. Se realizó un pre-tratamiento al aceite que consistió en la separación de sólidos, secado eliminación de ácidos grasos libres. Para este último, si el aceite usado tenía un índice de acidez (IA) < 1% se debería agregar más catalizador a la reacción; sin embargo si el IA fuera > 1% se realizaría una esterificación ácida. El índice de acidez obtenido fue de 0.6% con lo que se determinaron las cantidades de catalizador a utilizar en los tratamientos: 4.425 g NaOH/L aceite y 10.245 g KOHg KOH/L aceite. Para conocer la temperatura óptima de reacción se realizaron 10 tratamientos a esa de laboratorio según tipo de catalizador y nivel de temperatura (60°C, 50°C, 40°C, 30°C, ambiente). A cada producto se les midieron propiedades como velocidad de caída, rendimiento de producción de biodiesel, rendimiento de producción de glicerol y densidad; se utilizó un arreglo factorial en DCA. Al no contar con una cromatógrafo de gases que pudiera haber determinado exactamente el porcentaje de metilésteres y productos intermedios en el resultado final, se optó por considerar la cantidad producida de glicerol como determinante para la obtención de un mejor producto, debido a que deriva de una mayor conversión de triglicéridos y una menor cantidad de productos intermedios en el biodiesel. Para 60°C no sólo se obtuvo un mejor rendimiento si no también una mayor velocidad de caída. En el reactor de biodiesel se transesterificaron 2 bath de 40 L de aceite a 60°C por cada tipo de catalizador; se tomaron muestras cada quince minutos para determinar el tiempo óptimo y mejor catalizador en la reacción. A los productos resultantes se le midió las mismas propiedades que a escala de laboratorio y se utilizó el mismo criterio de la cantidad de glicerol producido para conocer la mejor producción de biodiesel a nivel de tiempo. Para el caso de NaOH, la mayor producción de glicerol se obtuvo a los 150 minutos de reacción pero con un rendimiento del 12.6%, sin embargo para la reacción catalizada con KOH, el tiempo óptimo fue de 75 minutos y el rendimiento de 14.6%. Este último catalizador por lo tanto logra una mayor transformación de triglicéridos a metilésteres y glicerol. Evaluando los rendimientos de producción de biodiesel respecto al aceite usado original, se obtuvo 96.9% (catalizado con NaOH) y 94.4% (catalizado con KOH). Las propiedades combustibles medidas en el biodiesel producido fueron comparadas con los estándares ASTM 6751-03 (B100) encontrándose que: el punto de inflamación, índice de cetano, porcentaje de cenizas, viscosidad cinemática e índice de acidez, cumplen con la norma técnica; mientras que el porcentaje de agua y sedimentos (para el producido con NaOH), y porcentaje de carbón Conradson (para ambos catalizadores), no cumplen con lo establecido en las normas, por lo que el producto aún contendría impurezas debido a una posible deficiencia en el lavadospainfo:eu-repo/semantics/openAccessProducción de biodiesel, Comedor universitario, Desechos de aceites vegetalesAprovechamiento de los desechos de aceites vegetales generados por el comedor universitario de la U.N.T. para la producción de biodieselinfo:eu-repo/semantics/bachelorThesis