Roldán López, José AngelMarín Rengifo, Kelman Widman2024-04-302024-04-302024https://hdl.handle.net/20.500.14414/21245Se investigaron las oscilaciones plasmónicas en grupos de nanopartículas, empezando por el desarrollo de las ecuaciones de la electrostática en un grupo de dos nanopartículas, en formas de: nanoalambres, nanoesferas, y nanoesferoides prolate y oblate, en el sistema de coordenadas apropiadas al grupo. Posteriormente, se investigaron las oscilaciones plasmónicas en grupos de mayor número de nanopartículas. Se aplicó la técnica documental, mediante cálculos analíticos, y la metodología computacional para los cálculos numéricos. Se identificaron nuevas ramas de oscilaciones, que originan los átomos plasmónicos y moléculas plasmónicas. Estas interactúan, definiendo las interacciones en el grupo de nanopartículas, y que originan cambios en el comportamiento de las distribuciones de carga, campo eléctrico y potenciales electrostáticos, y de propiedades ópticas en dichos grupos. Esto originó una variedad de aplicaciones. Para el grupo de dos nanopartículas, se observó que el factor de mejora del campo depende inversamente con el gap entre nanopartículas. También se identificó un mayor desplazamiento de los picos de absorción doble hacia mayores longitudes de onda, cuando la polarización de la luz es longitudinal Z en comparación con las polarizaciones transversales X e Y, para el coeficiente de absorción. Para el grupo de mayor número de nanopartículas aparecieron los modos brillantes y oscuros, que dependen de los modos plasmónicos. Se observó la aparición de picos en la eficiencia de absorción debido al efecto de retardo para polarizaciones S y P. Se concluyó enfatizando que la intensificación del campo eléctrico cuadrático respecto al campo incidente cuadrático, es mayor para un número grande de nanoesferoides, respecto al caso de dos nanoesferoides; pero que esta intensificación retornaría al caso de una nanoesferoide, aumentando la separación entre nanoesferoides. Los grupos de nanopartículas presentaron mayor eficiencia de absorción para el modo plasmónico T1; con m=1 para la polarización S, y con m=0 para la polarización P.Plasmonic oscillations in groups of nanoparticles were investigated, starting with the development of electrostatic equations in a group of two nanoparticles, in the forms of: nanowires, nanospheres, and prolate and oblate nanospheres, in the appropriate coordinate system for the group. Subsequently, plasmonic oscillations were investigated in groups with a greater number of nanoparticles. The documentary technique was applied, through analytical calculations, and the computational methodology for numerical calculations. New branches of oscillations were identified, which originate plasmonic atoms and plasmonic molecules. These interact, defining the interactions in the group of nanoparticles, and that cause changes in the behavior of charge distributions, electric field and electrostatic potentials, and of optical properties in these groups. This created a variety of applications. For the group of two nanoparticles, it was observed that the field enhancement factor inversely depends on the gap between nanoparticles. A greater displacement of the double absorption peaks towards higher wavelengths was also identified, when the polarization of the light is longitudinal Z compared to the transverse polarizations X and Y, for the absorption coefficient. For the group with the largest number of nanoparticles, the bright and dark modes appeared, which depend on the plasmonic modes. The appearance of peaks in the absorption efficiency was observed due to the delay effect for S and P polarizations. It was concluded by emphasizing that the intensification of the quadratic electric field with respect to the quadratic incident field is greater for a large number of nanospheres, with respect to the case of two nano spheroids, but that this intensification would return to the case of a nano spheroid, increasing the separation between nanospheres. The groups of nanoparticles presented higher absorption efficiency for the plasmonic mode T1; with m = 1 for polarization S, and with m = 0 for polarization P.application/pdfesinfo:eu-repo/semantics/openAccessGrupos de nanopartículasNanoplasmónicaModos plasmónicosPlasmones localizados en grupos de nanopartículasinfo:eu-repo/semantics/doctoralThesishttps://purl.org/pe-repo/ocde/ford#1.03.03