Diseño de un exoesqueleto para rehabilitación de miembros inferiores para pacientes con secuelas de un accidente cerebrovascular
No Thumbnail Available
Date
2024-04
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Nacional de Trujillo
Abstract
Se diseñó un exoesqueleto robótico para la rehabilitación de personas que tengan
secuelas de un accidente cerebrovascular de 3 grados de libertad por extremidad para lo
cual se propuso una tarea de diseño adecuada que logre englobar todo lo que se realizará,
para el desarrollo esa tarea de diseño se realizó la búsqueda de parámetros humanos y de
rehabilitación algunos encontrados usando el software Kinovea, los cuales nos sirven
como requerimientos de diseño y simulación para el exoesqueleto, así también se propuso
diseños conceptuales a partir de los parámetros humanos. Teniendo en cuenta el diseño
conceptual más adecuado se continuó con la determinación del análisis cinemático de este
apoyándonos del algoritmo de Denavit-Hartenberg el cual mediante ciertos parámetros
nos dio como resultado la cinemática directa y por consiguiente también la cinemática
inversa del exoesqueleto. Luego de haber desarrollado el análisis cinemático del
exoesqueleto se desarrolló el análisis dinámico del exoesqueleto teniendo como
consideración para realizar aproximaciones como el centro de masa, el momento de
inercias y el peso para las partes que componen la extremidad inferior para el usuario, así
como las partes del exoesqueleto los cuales nos ayudaran como variables que componen
la ecuación de Euler-Lagrange. También se determinó la generación de trayectorias
mediante el método de polinomios cúbicos teniendo en cuenta los parámetros de
rehabilitación encontrados. Luego se determinó la simulación del exoesqueleto en las
trayectorias realizadas. Por último, se realiza una evaluación del exoesqueleto siguiendo
los criterios de valoración que se propuso en el anexo 1.
A robotic exoskeleton was designed for the rehabilitation of people who have sequelae of a stroke with 3 degrees of freedom per limb, for which an appropriate design task was proposed that managed to encompass everything that was carried out, for the development of this design task. The search for human and rehabilitation parameters was carried out, some found using the Kinovea software, which serve as design and simulation requirements for the exoskeleton, and conceptual designs were also proposed based on human parameters. Considering the most appropriate conceptual design, we continued with the determination of the kinematic analysis of this, relying on the DenavitHartenberg algorithm which, through certain parameters, resulted in the direct kinematics and therefore also the inverse kinematics of the exoskeleton. After having developed the kinematic analysis of the exoskeleton, the dynamic analysis of the exoskeleton was developed taking into consideration to make approximations such as the centre of mass, the moment of inertias and the weight for the parts that make up the lower extremity for the user, as well as the parts of the exoskeleton which will help us as variables that make up the Euler-Lagrange equation. The generation of trajectories was also determined using the cubic polynomial method considering the rehabilitation parameters found. Then the simulation of the exoskeleton was determined in the trajectories carried out. Finally, an evaluation of the exoskeleton is carried out following the evaluation criteria proposed in Annex 1.
A robotic exoskeleton was designed for the rehabilitation of people who have sequelae of a stroke with 3 degrees of freedom per limb, for which an appropriate design task was proposed that managed to encompass everything that was carried out, for the development of this design task. The search for human and rehabilitation parameters was carried out, some found using the Kinovea software, which serve as design and simulation requirements for the exoskeleton, and conceptual designs were also proposed based on human parameters. Considering the most appropriate conceptual design, we continued with the determination of the kinematic analysis of this, relying on the DenavitHartenberg algorithm which, through certain parameters, resulted in the direct kinematics and therefore also the inverse kinematics of the exoskeleton. After having developed the kinematic analysis of the exoskeleton, the dynamic analysis of the exoskeleton was developed taking into consideration to make approximations such as the centre of mass, the moment of inertias and the weight for the parts that make up the lower extremity for the user, as well as the parts of the exoskeleton which will help us as variables that make up the Euler-Lagrange equation. The generation of trajectories was also determined using the cubic polynomial method considering the rehabilitation parameters found. Then the simulation of the exoskeleton was determined in the trajectories carried out. Finally, an evaluation of the exoskeleton is carried out following the evaluation criteria proposed in Annex 1.
Description
Keywords
TECHNOLOGY::Engineering mechanics::Other engineering mechanics