Modelo Hidrológico HEC-HMS para determinar el caudal máximo de la microcuenca del río Canibamba.Charat.Otuzco.La Libertad.2022

dc.contributor.advisorCabanillas Agreda, Carlos Alberto
dc.contributor.authorDávila Mendoza, Frank Alexander
dc.date.accessioned2024-11-04T17:27:35Z
dc.date.available2024-11-04T17:27:35Z
dc.date.issued2024
dc.description.abstractLa información hidrometeorológica es importante para prevenir inundaciones, así como también para el diseño de infraestructura hidráulica, es por ello cuando no se dispone data de caudales se puede usar un modelo de lluvias-escorrentía, a través de curvas Intensidad- Duración- Frecuencia (Curvas IDF) para determinar los caudales máximos de diseño. El objetivo de la investigación es aplicar el modelo hidrológico HEC HMS para obtener caudales máximos en el río Canibamba que cruza por la localidad de Sañumas, de tal manera permita prevenir inundaciones que puedan afectar a los cultivos y viviendas, es por ello se delimitó la subcuenca, a través de imágenes satelitales y cartas nacionales utilizando un sistema de información geográfica, además se aplicó la estadística probabilística a la data de precipitación disponible en la página web de la NASA, y se aplicó un modelo hidrológico precipitación-escorrentía a través de las curvas Intensidad Duración y Frecuencia (IDF), y finalmente se realizó el modelamiento a través del software libre HEC-HMS que permitió determinar los caudales máximos de diseño en los períodos de retorno de 10, 25,50,100,140 y 200 años. Se aplicó el modelamiento hidrológico HEC HMS, para determinar los caudales máximos de diseño. Para el estudio se tomó como datos de evaluación a las precipitaciones máximas registradas en la estación meteorológica con data de SENAMHI de Callancas, Quiruvilca y Capachique, y de la estación virtual obtenida de la NASA. El área de subcuenca estudiada fue de 445,15 km2, un perímetro de 105,29 km, una altitud media de 3 200,00 msnm y una longitud del curso principal de 41,04 km, con una pendiente del cauce principal de 6,8 % los caudales máximos para los períodos de retorno de 10, 25,50, 100, 140 y 200 años de retorno fueron 285,95; 429,775; 581,4; 779,5; 895,75 y 1035,5 m3/s respectivamente.
dc.description.abstractABSTRACT Hydrometeorological information is important to prevent floods, as well as for the design of hydraulic infrastructure, which is why when flow data is not available, a rainfall-runoff model can be used, through Intensity-Duration-Frequency curves (Curves IDF) to determine the maximum design flows. The objective of the research is to apply the HEC HMS hydrological model to obtain maximum flows in the Canibamba river that crosses the town of Sañumas, in such a way that it allows preventing floods that may affect crops and homes, which is why the sub-basin was delimited. , through satellite images and national charts using a geographic information system, in addition, probabilistic statistics were applied to the precipitation data available on the NASA website, and a precipitation-runoff hydrological model was applied through the curves Intensity Duration and Frequency (IDF), and finally the modeling was carried out through the free software HEC-HMS that allowed determining the maximum design flows in the return periods of 10, 25,50,100,140 and 200 years. HEC HMS hydrological modeling was applied to determine the maximum design flows. For the study, the maximum rainfall recorded at the meteorological station with data from SENAMHI of Callancas, Quiruvilca and Capachique, and from the virtual station obtained from NASA, was taken as evaluation data. The studied sub-basin area was 445.15 km2, a perimeter of 105.29 km, an average altitude of 3,200.00 m asl and a length of the main course of 41.04 km, with a slope of the main channel of 6 .8% the maximum flows for the return periods of 10, 25.50, 100, 140 and 200 return years were 285,95; 429,77; 581,40; 779,50; 895,75 and 1035,50 m3/s respectively.
dc.formatapplication/pdf
dc.identifier.urihttps://hdl.handle.net/20.500.14414/22763
dc.language.isospa
dc.publisherUniversidad Nacional de Trujillo
dc.publisher.countryPE
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectPrecipitación máxima
dc.subjectIDF
dc.subjectHietograma
dc.subjectBloques alternos
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#4.00.00
dc.titleModelo Hidrológico HEC-HMS para determinar el caudal máximo de la microcuenca del río Canibamba.Charat.Otuzco.La Libertad.2022
dc.typeinfo:eu-repo/semantics/bachelorThesis
dc.type.versioninfo:eu-repo/semantics/publishedVersion
renati.advisor.dni80247224
renati.advisor.orcidhttps://orcid.org/0000-0003-4269-949X
renati.author.dni44805600
renati.discipline811096
renati.jurorVillanueva Sánchez, Jorge Arturo
renati.jurorVasquez Diaz, Jose Lauriano
renati.jurorGonzáles Correa, Cristóbal
renati.jurorCabanillas Agreda, Carlos Alberto
renati.levelhttps://purl.org/pe-repo/renati/level#tituloProfesional
renati.typehttps://purl.org/pe-repo/renati/type#tesis
thesis.degree.disciplineIngenieria Agricola
thesis.degree.grantorUniversidad Nacional de Trujillo. Facultad de Ciencias Agropecuarias
thesis.degree.nameIngeniero Agricola
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
DAVILA MENDOZA FRANK ALEXANDER.pdf
Size:
6.09 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: