Modelo hidrológico incluyendo la temperatura ambiental para infraestructura de siembra y cosecha de agua en cuencas altas
No Thumbnail Available
Date
2024
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Nacional de Trujillo
Abstract
La investigación tuvo como objetivo aplicar un modelo hidrológico que incluya la temperatura
ambiental para optimizar la infraestructura de siembra y cosecha de agua en cuencas altas,
específicamente en Hualgayoc, Cajamarca, mejorando la gestión hídrica frente a variaciones
climáticas. La metodología incluyó cinco modelos clave: el Modelo Geométrico de Cuenca,
que definió parámetros morfométricos de las microcuencas; el Modelo Meteorológico, que
analizó tormentas de diseño integrando datos de temperatura y precipitación; el Modelo de
Pérdidas (Número de Curva - CN), que estimó la escorrentía en función del tipo de suelo y
cobertura vegetal; el Modelo de Transformación, para calcular las precipitaciones de diseño en
intervalos menores a 24 horas; y el Modelo de Tránsito, que simuló la respuesta de las qochas
y otros depósitos naturales frente a eventos de precipitación. La data meteorológica,
fundamental para obtener resultados precisos, provino de una fuente confiable, pero se sometió
a un riguroso control de calidad para asegurar su exactitud. Los resultados revelaron
información relevante sobre la escorrentía superficial y los caudales máximos, destacando
caudales de 18.6 m³/s en la qocha de Terrones y 17.9 m³/s en Chaupiquinua I. La inclusión de
variables climáticas permitió una estimación detallada del comportamiento hídrico en
escenarios de lluvias intensas, brindando una base sólida para diseñar infraestructuras de
captación eficientes. En conclusión, el modelo propuesto es viable para la planificación de
infraestructura hídrica en zonas montañosas afectadas por el cambio climático, ofreciendo bases
para reducir riesgos de erosión, optimizar el almacenamiento de agua y aplicarse en otras
cuencas con retos similares de gestión hídrica.
The research aims to apply a hydrological model that includes ambient temperature to optimize water sowing and harvesting infrastructure in high-altitude watersheds, specifically in Hualgayoc, Cajamarca, improving water management in response to climatic variations. The methodology included five key models: the Geometric Watershed Model, which defined the morphometric parameters of the micro-watersheds; the Meteorological Model, which analyzed design storms by integrating temperature and precipitation data; the Loss Model (Curve Number - CN), which estimated runoff based on soil type and vegetation cover; the Transformation Model, to calculate design precipitation over intervals of less than 24 hours; and the Transit Model, which simulated the response of qochas and other natural reservoirs to precipitation events. Meteorological data, essential for achieving accurate results, came from a reliable source but was subjected to rigorous quality control to ensure precision. The results revealed relevant information on surface runoff and maximum flow rates, with flows of 18.6 m³/s in the Terrones qocha and 17.9 m³/s in Chaupiquinua I. The inclusion of climatic variables enabled a detailed estimation of hydrological behavior under intense rainfall scenarios, providing a solid foundation for designing efficient water collection infrastructures. In conclusion, the proposed model is feasible for planning water infrastructure in mountainous regions affected by climate change, offering a basis for reducing erosion risks, optimizing water storage, and being applicable to other watersheds with similar water management challenges.
The research aims to apply a hydrological model that includes ambient temperature to optimize water sowing and harvesting infrastructure in high-altitude watersheds, specifically in Hualgayoc, Cajamarca, improving water management in response to climatic variations. The methodology included five key models: the Geometric Watershed Model, which defined the morphometric parameters of the micro-watersheds; the Meteorological Model, which analyzed design storms by integrating temperature and precipitation data; the Loss Model (Curve Number - CN), which estimated runoff based on soil type and vegetation cover; the Transformation Model, to calculate design precipitation over intervals of less than 24 hours; and the Transit Model, which simulated the response of qochas and other natural reservoirs to precipitation events. Meteorological data, essential for achieving accurate results, came from a reliable source but was subjected to rigorous quality control to ensure precision. The results revealed relevant information on surface runoff and maximum flow rates, with flows of 18.6 m³/s in the Terrones qocha and 17.9 m³/s in Chaupiquinua I. The inclusion of climatic variables enabled a detailed estimation of hydrological behavior under intense rainfall scenarios, providing a solid foundation for designing efficient water collection infrastructures. In conclusion, the proposed model is feasible for planning water infrastructure in mountainous regions affected by climate change, offering a basis for reducing erosion risks, optimizing water storage, and being applicable to other watersheds with similar water management challenges.
Description
Keywords
HUMANITIES and RELIGION::History and philosophy subjects::History subjects::History