Existencia de solución débil para un problema asintóticamente periódico de la ecuación de Schrödinger no lineal con laplaciano fraccionario regional
dc.contributor.advisor | Torres Ledesma, César Enrique | |
dc.contributor.author | Cuti Gutiérrez, Hernán Arquímides | |
dc.date.accessioned | 2023-10-20T13:38:41Z | |
dc.date.available | 2023-10-20T13:38:41Z | |
dc.date.issued | 2023 | |
dc.description.abstract | En este trabajo, estudiamos la existencia de solucio´n para la ecuacio´n de Schro¨dinger no lineal con difusio´n regional no local (P ) (−Δ)su + V (x)u = f (x, u) en RN , u ∈ Xs(RN ) , donde s ∈ (0, 1), N ≥ 2, V : RN → R y f : RN × R → R son funciones continuas y el operador (−Δ)s es una versio´n variacional del Laplaciano regional no local definido como ∫RN ( Δ)su(x)v(x) dx = RN ∫B(0,ρ(x)) [u(x + z) − u(x)][v(x + z) − v(x)] dzdx , |z|N +2s donde ρ C(RN, R+), cuando ρ, V y f ( , t) son asinto´ticamente perio´dicas en el infinito. La existencia de soluciones de energ´ıa m´ınima de este problema es obtenida mediante un me´todo de comparacio´n, el cual consiste en comparar los n´ıveles de energ´ıa del caso perio´dico y el caso no perio´dico (asinto´ticamente perio´dico). Para esto, primero se garantiza la existencia de soluciones del caso perio´dico usando la variedad de Nehari. | |
dc.description.abstract | In this work, we study the nonlinear Scho¨dinger equation with nonlocal regional diffusion (P ) (−Δ)su + V (x)u = f (x, u) in RN , u ∈ Xs(RN ) , where s ∈ (0, 1), N ≥ 2, V : RN → R and f : RN × R → R are continuous functions and the operador (−Δ)s is a variational version of the nonlocal regional Laplacian defined as ∫RN ( Δ)su(x)v(x) dx = RN ∫B(0,ρ(x)) [u(x + z) − u(x)][v(x + z) − v(x)] dzdx , |z|N +2s where ρ C(RN, R+), when ρ, V and f ( , t) are periodic or asymptotically periodic at in- finity. The existence of minimum energy solutions of this problem is obtained by means of a comparison method, which consists in comparing the energy levels of the periodic case and the non-periodic case (asymptotically periodic). For this, the existence of solutions of the periodic case is first guaranteed using the Nehari manifold. | |
dc.format | application/pdf | |
dc.identifier.uri | https://hdl.handle.net/20.500.14414/18955 | |
dc.language.iso | es | |
dc.publisher | Universidad Nacional de Trujillo | |
dc.publisher.country | PE | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | Universidad Nacional de Trujillo | |
dc.subject | Laplaciano regional no local | |
dc.subject | Ecuaciones elípticas no lineales | |
dc.subject | Problemas no locales | |
dc.subject | métodos variacionales | |
dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#1.01.00 | |
dc.title | Existencia de solución débil para un problema asintóticamente periódico de la ecuación de Schrödinger no lineal con laplaciano fraccionario regional | |
dc.type | info:eu-repo/semantics/doctoralThesis | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
renati.advisor.dni | 42417185 | |
renati.advisor.orcid | https://orcid.org/0000-0002-6889-4982 | |
renati.author.dni | 32912394 | |
renati.discipline | 541038 | |
renati.juror | Méndez Cruz, Gilberto Amado | |
renati.juror | Maco Vásquez, Wilson Arcenio | |
renati.juror | Torres Ledesma, César Enrique | |
renati.level | http://purl.org/pe-repo/renati/level#doctor | |
renati.type | http://purl.org/pe-repo/renati/type#tesis | |
thesis.degree.discipline | Doctorado en Matemática | |
thesis.degree.grantor | Universidad Nacional de Trujillo. Escuela de Posgrado | |
thesis.degree.name | Doctor en Matemática |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Cuti Gutierrez, Hernán Arquímedes.pdf
- Size:
- 1002.66 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: