La continuidad entre espacios topológicos difusos

No Thumbnail Available
Date
2013
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Nacional de Trujillo
Abstract
La continuidad de una funci on de nida entre espacios topol ogicos cl asicos es un_x000D_ concepto topol ogico fundamental y de gran importancia para el desarrollo de las_x000D_ matem aticas y de sus aplicaciones. Sin embargo, debido a la complejidad del mundo_x000D_ real y de la imprecisi on contenida en muchos fen omenos de la naturaleza estos se describen_x000D_ o explican mejor mediante los conjuntos difusos, los que fueron introducidos_x000D_ por el ingeniero L. Zadeh (1965) [7]._x000D_ El concepto de conjunto difuso generaliza el concepto de conjunto cl asico. Un conjunto_x000D_ difuso A en un universo X est a asociado a una funci on A : X ! [0; 1] que_x000D_ asigna a cada elemento x de X un n umero real A(x) en [0; 1] llamado \grado de_x000D_ pertenencia" del elemento x al conjunto A. Un mayor grado de pertenencia re_x000D_ eja_x000D_ un sentido de pertenencia \m as" fuerte al conjunto A._x000D_ Este trabajo se basa en la teor a de los espacios topol ogicos difusos introducidos en_x000D_ 1968 por Chang [1] y est a orientado a extender al contexto difuso el concepto de_x000D_ continuidad y tambi en un conocido teorema de la topolog a general que preserva la_x000D_ compacidad
Description
The continuity of a function de ned between classical topological spaces is a fundamental_x000D_ and very important for the development of mathematics and its applications_x000D_ topological concept. However, due to the complexity of the real world and the imprecision_x000D_ contained in many phenomena of nature these are described or better_x000D_ explained by fuzzy sets , which were introduced by the engineer L. Zadeh (1965) [7]._x000D_ The concept of fuzzy set generalizes the classical notion of set . A fuzzy set A in_x000D_ a universe X is associated with a function A : X ! [0; 1] that assigns to each_x000D_ element x of X a real number A(x) in [0; 1] called \ degree of membership " of the_x000D_ element x to the set A. A higher degree of membership re_x000D_ ects a sense of belonging_x000D_ to \ more " strong set A._x000D_ This work is based on the theory of fuzzy topological spaces introduced in 1968 by_x000D_ Chang [1] and is oriented to extend to the fuzzy context the concept of continuity_x000D_ and also a well-known theorem of general topology preserving compactness
Keywords
Espacios topológicos
Citation