La continuidad entre espacios topológicos difusos

dc.contributor.advisorRamIrez Lara, Guillermo
dc.contributor.authorAlayo Yupanqui, Marco Antonio
dc.date.accessioned8/4/2017 10:57
dc.date.available8/4/2017 10:57
dc.date.issued2013
dc.descriptionThe continuity of a function de ned between classical topological spaces is a fundamental_x000D_ and very important for the development of mathematics and its applications_x000D_ topological concept. However, due to the complexity of the real world and the imprecision_x000D_ contained in many phenomena of nature these are described or better_x000D_ explained by fuzzy sets , which were introduced by the engineer L. Zadeh (1965) [7]._x000D_ The concept of fuzzy set generalizes the classical notion of set . A fuzzy set A in_x000D_ a universe X is associated with a function A : X ! [0; 1] that assigns to each_x000D_ element x of X a real number A(x) in [0; 1] called \ degree of membership " of the_x000D_ element x to the set A. A higher degree of membership re_x000D_ ects a sense of belonging_x000D_ to \ more " strong set A._x000D_ This work is based on the theory of fuzzy topological spaces introduced in 1968 by_x000D_ Chang [1] and is oriented to extend to the fuzzy context the concept of continuity_x000D_ and also a well-known theorem of general topology preserving compactnesses_PE
dc.description.abstractLa continuidad de una funci on de nida entre espacios topol ogicos cl asicos es un_x000D_ concepto topol ogico fundamental y de gran importancia para el desarrollo de las_x000D_ matem aticas y de sus aplicaciones. Sin embargo, debido a la complejidad del mundo_x000D_ real y de la imprecisi on contenida en muchos fen omenos de la naturaleza estos se describen_x000D_ o explican mejor mediante los conjuntos difusos, los que fueron introducidos_x000D_ por el ingeniero L. Zadeh (1965) [7]._x000D_ El concepto de conjunto difuso generaliza el concepto de conjunto cl asico. Un conjunto_x000D_ difuso A en un universo X est a asociado a una funci on A : X ! [0; 1] que_x000D_ asigna a cada elemento x de X un n umero real A(x) en [0; 1] llamado \grado de_x000D_ pertenencia" del elemento x al conjunto A. Un mayor grado de pertenencia re_x000D_ eja_x000D_ un sentido de pertenencia \m as" fuerte al conjunto A._x000D_ Este trabajo se basa en la teor a de los espacios topol ogicos difusos introducidos en_x000D_ 1968 por Chang [1] y est a orientado a extender al contexto difuso el concepto de_x000D_ continuidad y tambi en un conocido teorema de la topolog a general que preserva la_x000D_ compacidades_PE
dc.description.uriTesises_PE
dc.identifier.urihttps://hdl.handle.net/20.500.14414/8336
dc.language.isospaes_PE
dc.publisherUniversidad Nacional de Trujilloes_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/es_PE
dc.sourceUniversidad Nacional de Trujilloes_PE
dc.sourceRepositorio institucional - UNITRUes_PE
dc.subjectEspacios topológicoses_PE
dc.titleLa continuidad entre espacios topológicos difusoses_PE
dc.typeinfo:eu-repo/semantics/bachelorThesises_PE
thesis.degree.disciplineMatemáticases_PE
thesis.degree.grantorUniversidad Nacional de Trujillo.Facultad de Ciencias Físicas y Matemáticases_PE
thesis.degree.levelTítulo Profesionales_PE
thesis.degree.nameLicenciado en Matemáticases_PE
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ALAYO YUPANQUI, Marco Antonio.pdf
Size:
2.45 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: